Development, Analysis, and Demonstration of
a Rudimentary fastText Classification Model
for COVID-19 Misinformation
Alexandra Zharchuk
2024-05-17

real

fac111ty zegland e
ndeat
? p ok
DrTed

Trump man k111 cure

state edi Facebook

t lm e d e >>>>>> ‘ \ recorver ies ; h;
Videosmex P"étlentw.ﬂ conflrmednum

Figure 1: Significant keywords in fake vs. real labeled tweets generated with WordCloud

President

recovered 31;(

uuuuuuuuuuu

Introduction

Since its initial appearance in March 2020, the novel coronavirus has undeniably altered history.
Leading to over 7 million global casualties from 2020 to 2024, the virus and its resulting disease
have become widely recognized topics of conversation.

The urgency surrounding the virus has generated countless narratives including but not limited
to its symptomology, treatment, outcomes, and speculative origins. Many of these narratives
are validated by scientific investigation and propagated by authorized information channels
(government, local, scientific, academic) on popular social media sites.

On the contrary, there exists a subsection of narrative that presents unsubstantiated infor-
mation - often propagated through the same social networking outlets used by authorized
entities. These narratives are often based on unverified claims and false information about
various aspects of COVID-19 and its causative agent.

The distribution and origins of COVID-19 misinformation are broad and thus difficult to
fully classify. However, American government intelligence suggests that parties involved in
COVID-19 misinformation propagation are malicious non-state actors, governments, and or-
ganizations!. Misinformation from these sources is often generated by automated processes
(bots) and disseminated on Twitter, Facebook, Instagram, and other social media platforms.
Such misinformation content is often generated to instill chaos, mistrust, and confusion. Other
sources of misinformation are attributed to the internet presence of high-level politicians,
celebrities, and other public figures? .

There is general agreement that misinformation hinders public health progress and generates
public confusion. Additionally, there is an inverse relationship between the exponential increase
of generated internet content and the collective ability to process it. The loss of information
literacy paired with colossal data generation brings a specific challenge to misinformation
mitigation efforts.

An appropriate solution to mitigate misinformation spread is the application of machine learn-
ing methods (MLM) for online misinformation filtering. Given the utility of MLM in handling
large, live data - these methods can be employed to detect and filter out false information in
real-time.

As machine learning becomes more advanced and accessible, it is of interest to explore text
identification methods using MLM techniques such as natural language processing (NLP). A
particular MLM, fastText, is notable for its efficiency in this domain.

!Kavanagh, J., & Rich, M. D. (2021). Truth Decay in the COVID-19 Pandemic: Exploring Sources
and Impacts of Misinformation. In S. J. Gentry & K. E. Boyce (Eds.), Pandemics and the Crisis of
Information (pp. 115-136). Springer. https://doi.org/10.1007/978-3-030-73955-3__7

2Newman, N., Fletcher, R., Schulz, A., Andi, S., Robertson, C. T., & Nielsen, R. K. (2020). Types, Sources,
and Claims of COVID-19 Misinformation. Reuters Institute for the Study of Journalism. Retrieved
from https://reutersinstitute.politics.ox.ac.uk/types-sources-and-claims-covid-19-misinformation

https://reutersinstitute.politics.ox.ac.uk/types-sources-and-claims-covid-19-misinformation

fastText is a popular NLP algorithm developed by formerly Facebook’s AI Research Lab.
As well as showing success in text classification, fastText is notable for its ability to quickly
process large datasets. Its efficiency, scalability, and ease of use make it an ideal candidate for
developing misinformation sentiment analysis tools.

In this analysis, fastText’s capabilities are leveraged to develop a rudimentary text classi-
fication model trained on online COVID-19 Twitter content. The ideal goal of the model
development process is an effective demonstration of fastText’s efficacy in labeling text as
COVID-19 misinformation.

Abstract

A fastText model is developed to label COVID-19 content as ‘fake’ or ‘real” information. The
model is trained, tested, evaluated, and deployed on 4 pieces of selected COVID-19 related text
content. Customized preprocessing methods for misinformation-specific data are explored.

Data Collection and Summary

Data Preparation

UNESCO GitHub
Rvest via RStudio
full_text_disinfo.txt english_test_with_label.csv
Validation Set Core Dataset

Preprocessing

AutotuneValidationFile Core Training Set

Training

Supervised fastText Algorithm Core Testing Set

Model Prototype

Prototype Testin§ ______

‘ Metrics: Accuracy, Precicsion, F1, Recall, Confusion Matrix ‘

Performance Performance

Sufficient Poor

Core Dataset:

The core dataset serves as the main dataset for training and testing the fastText model. The
original source can be found in the GitHub repository for ArXiv article ‘ Combating COVID-19
Misinformation on Social Media: A Scalable, Semisupervised Learning Approach’.

The original dataset contains 3 columns with 2140 observations in total:
id tweet label

The training dataset consists of English-language tweets related to COVID-19. The data was
sourced from social media platforms and labeled with sentiment (positive, negative, neutral)
and misinformation tags (real, fake). The training data comprised tweets with corresponding
labels, while a separate validation set was used for model tuning. More information on the
core dataset is available on its parent GitHub repository page.

Validation Dataset:

The validation set, used for autotuning fastText hyperparameters, is derived from a large
UNESCO dataset on COVID-19 misinformation.*

The source dataset contains 34 columns with 5645 observations in total.

S_no Secondary_Country
Source Primary_Country
Recoded_Main_Narrative Entry_Date
Motive Publication_Date
Motive_Description Title
Reported_On Direct_Post_4
Distrib_Channel Direct_Post_3
Misinfo_Type Direct_Post_2
Key_Words Direct_Post_1
Summary Coder Twitter_Reference
Notes Retrieve_from_3
Secondary_Language Retrieve_from_2
Primary_Language Retrieve_from_1
Region

The misinformation itself was derived from the URLs listed in the Reported_0n column. Web-
page content was scraped with Rvest in RStudio and compiled into full_text_disinfo.txt.

3Github Repository: Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., & Liu, Y. (2021). Com-
bating COVID-19 Misinformation on Social Media: A Scalable, Semisupervised Learning Approach [Code
repository]. Retrieved from https://github.com/diptamath/covid_ fake news

4UNESCO. (n.d.). ESOC COVID-19 Misinformation Dataset. Retrieved from https://www.unesco.org/en/
world-media-trends/esoc-covid- 19-misinformation-dataset

https://github.com/diptamath/covid_fake_news
https://www.unesco.org/en/world-media-trends/esoc-covid-19-misinformation-dataset
https://www.unesco.org/en/world-media-trends/esoc-covid-19-misinformation-dataset

The derived dataset sourced text from 5645 URLs and yielded 1815376 characters and 268636
words total.

Because the fastText model weights are not affected by this data, labels were not required
when setting the fastText autotuneValidation parameter.

Pre-Processing

Stopword removal, label formatting, and character removal methods were embedded into a
custom “clutter removal” function and applied to the core dataset. Because fastText automat-
ically tokenizes and vectorizes text, the techniques have been omitted from the preprocessing

workflow.

Custom Stopword Removal Label Custom Character
Formatting Removal

A customized list of stopwords was created Each text entry Special characters such as

and added to default sklearn stopwords. was formatted to “#7, “@”, strings such as

Custom stopwords are categorized as those include an “https”, “t.co”, emojis,

present in all COVID-19 related content. appropriate punctuation, and

The full list of topic-exclusive keywords can __label__prefix whitespace were removed

be found in this document’s code index. required by to aid data readability.
fastText.

As a final preprocessing step, the core dataset was split into training and testing sets. The
testing set was created by methodically removing labels to hide true labels from the model.
Labels were retained in the training set.

Model Training

The labeled and pre-processed core data were used to train the fastText model, sourced directly
from the fasttext Python library.

Hyperparameter Selection

The ‘autotune’ feature of fastText was included to optimize hyperparameters. This feature
employs an external validation file for hyperparameter tuning. The tuning duration parameter
was manually set to 20 seconds. The label parameter was manually set for the model to better
identify text entries with the __label__ prefix.

Evaluation

Evaluation was performed by applying testing data to the model prototype shortly after train-
ing. The models’ performance was evaluated with the following classification metrics: preci-
sion, accuracy, recall, Fl-score. A confusion matrix was generated to visualize the distribution
of true positive, true negative, false positive, and false negative classifications.

precision recall fl-score support

fake 0.87 0.92 0.89 1020
real 0.92 0.87 0.90 1120

accuracy 0.89 2140
macro avg 0.89 2140
weighted avg 0.89 2140

Figure 2: Classification Metrics

Confusion Matrix

800

600

- 400

- 200

Figure 3: Confusion Matrix

Results

The model classification metrics show an accuracy of ~0.89-0.90. Precision scores for labels
“fake” and “real” are 0.87, 0.92 respectively. The model indicates strong performance in clas-
sifying the sentiment of tweets related to COVID-19 but does show a tendency in mislabeling
“fake” text as “real”.

Label Prediction Demonstration Results

The model correctly labeled 4 of 4 text inputs. See Code Index for label prediction details.

Conclusion

This analysis demonstrates the potential of fastText in the classification of COVID-19 misinfor-
mation. By accurately classifying sentiment, this tool can help identify, label, and mitigate the
spread of false information on social media platforms. The simplicity of this tool also provides
a useful introduction to machine learning application in misinformation classification.

Discussion & Limitations

The results indicate that the fastText model is moderately effective in classifying misinfor-
mation sentiment in text related to COVID-19. The preprocessing steps, particularly the
custom stopword removal, were significant to the model’s accuracy score. This approach can
be extended to other misinformation topics where sentiment is dependent on topic-specific
keywords.

Limitations of the Analysis:

1. Validation Data Source: It is not known to what extent the validation dataset in-
fluences model optimization. The webpage content in question was derived from URLs
that link to sources that reported on the source of misinformation. The content was not
directly derived from misinformation content and contained text written in languages
other than English. It is possible that model performance can be improved by sourcing
from direct misinformation content links in the validation set. Additionally, content
should contain information written in the English language.

2. Low Observation Size of Testing and Training Data: The size of the training and
testing data is relatively small in comparison to the validation set. The model’s ability
to classify text labels could be improved with the inclusion of larger training and testing
datasets.

3. Low Number of Testing Iterations: The number of testing iterations was limited
to one for the brevity of this analysis. Model performance could be improved and fur-
ther examined by increasing the number of testing iterations and accompanied testing
datasets.

10

11

12

4. Uniform Training Data Source: Because the model was trained only on content
derived from Twitter, there may be a knowledge gap in the model’s corpus. When
applied to classification on content outside of Twitter, the model may show inconsistent
prediction power.

5. Homogenous Testing and Training Data: The model’s performance may have been
compromised by uniformity in the testing and training data. Both the testing and
training data are identical except for the absence of labels in the training split.

6. Low Number of Prediction Capacity Demonstrations: This analysis included 4
demonstrations of the model’s predictive capacity. The 4 demonstrations are indicative
of performance, but not conclusive. Performing more predictions can finalize the model’s
true prediction power.

Future Direction

As stated in the limitations, the model can be further evaluated with the addition of larger
and heterogeneous training and testing data, a more specific validation dataset, and increased
testing iterations for the model. Including misinformation data from sources other than Twitter
in training data can aid in the model’s prediction capacity. Furthermore, the true classification
power of this model can be assessed with further label prediction trials.

Code Index

Environment Setup

import string

import numpy as np

import pandas as pd

import seaborn as sns

from os import path

from PIL import Image

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import fasttext

from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
import matplotlib as plt

from matplotlib import pyplot as plt

import sklearn.metrics as skm

13

14

10

11

12

10

11

from sklearn.metrics import classification_report, accuracy_score, precision_score,
< recall_score, fl_score, precision_recall_fscore_support as score
from sklearn.metrics import confusion_matrix

path = ('/Users/alexz/Programming/Python Projects/Sentiment Analysis of COVID-19
< Misinformation with
« fastText/Sentiment-Analysis—of-COVID-19-Misinformation-with-fastText')

train_data_english = pd.read_csv('/Users/alexz/Programming/Python Projects/Sentiment
< Analysis of COVID-19 Misinformation with fastText/Sentiment-Analysis—of-COVID-19-
o Misinformation-with-fastText/english_test_with_labels.csv')

peripheral_text =('/Users/alexz/Programming/Python Projects/Sentiment Analysis of
< COVID-19 Misinformation with fastText/Sentiment-Analysis—-of-COVID-19-
< Misinformation-with-fastText/full_text_cleaned.txt')

validation_set = []
with open(peripheral_text, 'r') as f:
Comment: Validation set
for line in f:
line = line.replace(" ",M\t").strip()
list = validation_set.append(line)
list = validation_set.append('\n")
validation_set = pd.Series(validation_set)

Creating Custom Stopword List and Preprocessing Functions

#create custom stopword list

custom_stopwords = set([

'covid', 'covid-19', 'coronavirus', 'pandemic', 'virus',

'vaccine', 'vaccination', 'vaccinated', 'vaccinate',

'symptoms', 'cases', 'infection', 'infected', 'infections',
'health', 'healthcare', 'hospital', 'doctor', 'nurse',

'mask', 'masks', 'quarantine', 'lockdown', 'isolation',

'positive', 'negative', 'test', 'testing', 'tested',

'who', 'cdc', 'government', 'authorities', 'official', 'officials',
'social', 'distancing', 'gquidelines', 'rules', 'regulations',
'information', 'misinformation', 'news', ‘'article', 'post', 'comment', 'share',

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

'people', 'person', 'individual', 'individuals', 'group',
'yesterday', 'tomorrow',
'years'

'html', 'php', 'asp',

'update', 'report', 'reported', 'reporting', 'today',

'day', 'days', 'week', 'weeks', 'month', 'months', 'year',
'https', 'http', 'www', 'com', 'org', 'net', 'gov', 'edu',

< ‘'aspx',
Ijspl, Iphpl’ Icfml,l#l’ Itl,

'groups’',

< ‘'co','http','https','s','COVID', 'COVID19', 'Corona', 'amp','a','b",'c"',

Idl,lel,lfl,lgl,lhl,Iil,ljl,lkl,lll,lml,Inl,lol,lpl,lql,lrl,ISI,ItI,IUI,IVI,IWI,IXI,IyI,IZI,

"IndiaFightsCorona", "CoronaVirusUpdates","MoHFW_India","RT", "NPR", "CDCgov'", "WHO",

< "HHSGov",

"CNBC", "CNN", "BBCWorld", "nytimes'", "CNN" , "BBCWorld", "nytimes", "washingtonpost",

< '"guardian", "Reuters",
IICDCII’ "00", "05"' Il3all, Il3bll, Il3dll, Il6bll, II60II’ Ilall,
< '"able", "about",

"a].", "32", "a3", "a4", "ab",

"above", "abst", "ac", "accordance", "according", "accordingly", "across", "act",

< "actually",

"ad", "added", "adj", "ae", "af", "affected", "affecting", "affects", "after",

< '"afterwards",
Ilagll' Ilagainll, Ilagainstll’ Ilahll’ Ilainll’ Ilainltll’ Ilajll’

"al", "all”, ”allOW”, ”allOWS",

"almost", "alone", "along", "already", "also", "although", "always", "am", "among",

"amongst", "amoungst", "amount", "an", "and", "announce", "another", "any",

o

"anyhow", "anymore'", "anyone", "anything",

"anybody",

"anyway", "anyways", "anywhere", "ao", "ap", "apart", "apparently", "appear",

< "appreciate",

"appropriate", "approximately", "ar", "are", "aren", "arent", "aren't", "arise",

< '"around",

"aS", "a'S", "aSide", "aSk", "aSking", "aSSOClated", ”at“, “au",

< '"available",

llauthll) llavll ,

"aW", "away", llawfu‘t‘l-yll’ "aX", "ay", "aZ", Ilbll’ "b].", "bZ", "b3", "ba", "baCk", Ilbcll’

N "bd", "be",

"became", "because", "become", 'becomes", "becoming", 'been", "before", "beforehand",

< "begin",

"beginning", "beginnings", '"begins", "behind", "being", "believe", "below", '"beside",

< "besides",

"beSt", "better", "between"’ "beyond", "bi", ||bi'L'L||’ "biOl", "bj", "bk", ||b‘L||' "bn",

< "both",

"bOttom", "bp", "br", "brief", "briefly"' "bS", "bt", "bU", "but", "bX", "by", "C",

N Ilclll' ”Cz”,

IIC3II’ "Ca", "Call", "Came"’ "Can", "CannOt", "Cant"’ "Can't", "Cause", "CaUSGS", "CC",

N "Cd”,

"Ce", "Cel’tain", llcertainlyll' ||c.f:||' ||cg||, “Ch", llchangesll' “C

< "clearly",

10

, "Cit", "Cj", ||C'L||'

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

con",

cm",

Cn", relo) ,

"c'mon", com", '"come", "comes", ""concerning",

< '"consequently",

"consider", "considering", '"contain", "containing", '"contains", "corresponding",

< "could",

"couldn", "couldnt", "couldn't", "course", "cp", "cq", "cr", "cry", "cs", "c's", "ct",
< "cu",

"currently", "cv", "cx
o 'definitely",
"describe", "described", "despite", "detail", "df", "di", "did", "didn", "didn't",

< "different",

"dj", "dk", "di1", "do", "does", "doesn", "doesn't", "doing", "don", "done", "don't",
< '"down",

"downwards", "dp", "dr", "ds", "dt", "du", "due", "during", "dx", "dy", "e", "e2",

< "e3",

"ea", "each", "ec", "ed", "edu", "ee", "ef", "effect", "eg", "ei", "eight", "eighty",
"either", "ej", "el", "eleven", "else", "elsewhere", "em", "empty", "en", "end",

, Ilcyll’ "CZ", Ildll' "d2", "da", "date“, "dC", "dd", "de",

< '"ending",

Ilenoughll’ Ilentirelyll' Ileoll' Ilepll’ Ileqll’ Ilerll’ Ilesll' IlespeCla'L‘Lyll’ Ilestll' Iletll'
< "et-al", "etc",

"ev'", "even", "ever", "every", "everybody", "everyone", "everything",

"eu",
< "everywhere",

"ex", "exactly", "example", "except", "ey", "f", "f2", "fa", "far", "fc", "few", "ff",
= "fi",

"fifteen", "fifth", "fify", "fill", "find", "fire", "first", "five", "fix", "fj",

- Uflt, "fn",

"fo", "followed", "following", "follows", "for", "former", "formerly", "forth",

< '"forty",

"found", "four", "fr", "from", "front", "fs", "ft", "fu", "full", "further",
"furthermore", "fy", "g¢", "ga", '"gave", 'ge", '"get", "gets", "getting", 'gi", "give",
"given", "gives", "giving", '"gj", "gl1", "go", "goes", 'going", "gone", "got",

- 'gotten",

"gr", "greetings", "gs", "gy", "h", "h2", "h3", "had", 'hadn", "hadn't", "happens",
"hardly", "has", "hasn", '"hasnt", "hasn't", "have", '"haven", "haven't", "having",
"he", "hed", "he'd", "he'll", "hello", "help", "hence", "her", "here", "hereafter",
"hereby", "herein", "heres", "here's", '"hereupon", "hers", '"herself", 'hes", "he's",
"hh", '"hi", "hid", "him", "himself", '"his", "hither", "hj", "ho", "home", "hopefully",
e

"how", "howbeit", "however", "how's", "hr", "hs", "http", "hu", "hundred", "hy", "i",
"i2", '"iz", "i4", "ie", "i7", "i8", "ia", "ib", "ibid", "ic", "id", "i'd", "ie", "if",

ii , lj"p ||i'L||’ ||i|‘L'LII’ "im", "ilm", "immediate",

Iligll’ Ilignoredll’ Ilihll’
o '"immediately",
"importance", "important",

in", "inasmuch", "inc", "indeed", "index", "indicate",

11

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

"indicated", "indicates", "information", "inner", "insofar", "instead", "interest",

"into", "invention", "inward", "io", "ip", "iqg", "ir", "is", "isn", "isn't", "it",

o '"itd",

"it'd", "it'ilet, “its™, "it's", "itself", "iv", "i've", "ix", "iy", "iz", "j", "jji",
& "j r“,

"js", "jt", "ju", "just", "k", "ke", "keep", "keeps", "kept", "kg", "kj", "km", "know",
"known", "knows", 'ko", "1", "12", "la", "largely", "last", "lately", "later",

- "latter",

"latterly", "1b", "1lc", "le", "least", "les", "less", "lest", "let", "lets", "let's",
"1f", "like", "1liked", "likely", "1line", "little", "1", "11", "11*, "ln", "lo",

— "].OOK",

"looking", "looks", "los", "1lr", "1ls", "1t", "1td", "m", "m2", "ma", "made", "mainly",
< "make",

"makes", "many", "may", "maybe", "me", "mean", "means", "meantime", "meanwhile",

o Ilmere'l-yll’ Ilmgll’

Ilmightll’ Ilmightnll' Ilmightnltll' Ilmi'l-'Lll' Ilmillionll’ Ilminell’ Ilmissll’ Ilm'l-ll’ Ilmnll’ Ilmoll’
Ilmorell' Ilmoreoverll' Ilmostll' Ilmostlylll IlmoveII’ Ilmr.II' Ilmrsll’ IImSII’ Ilmtll’ Ilmull’ Ilmuchll'
Ilmugll’ Ilmustll’ Ilmustnll’ Ilmustnltll’ Ilmyll’ Ilmyselfll’ Ilnll' “n2", Ilnall’ Ilnamell'
"namely", "nay", '"nc", '"nd", "ne", "near", "nearly", "necessarily", "necessary",
"need", "needn", "needn't", '"needs", "neither", '"never", "nevertheless", "new",
Ilnextll’ Ilngll' Ilnill' Ilninell' Ilninetyll, Ilnjll’ Iln'l-ll’ Ilnnll’ Ilnoll’ Ilnobodyll, Ilnonll’
"none", "nonetheless", '"noone", "nor", "normally", '"nos", "not", "noted", "nothing",

ny", "o", "ob", "obtain",
"obtained", "obviously", "oc", "od", "of", "off", "often", "og", "oh", "oi",

"oj", "ok", "okay", "ol", "old", "om", "omitted", "on", "once", "one", "ones",

"only", "onto", "o0o", "op", "oq", "or", "ord", "os", "ot", "other", "others",
"otherwise", "ou", "ought", "our", "ours", "ourselves", "out", "outside", "over",
"overall", "ow", "owing", "own", "ox", "oz", "p", "p1", "p2", "p3", "page",
"pagecount", "pages", "par", '"part", "particular", "particularly", "pas", "past",
"pc", "pd", "pe", "per", "perhaps", "pf", "ph", "pi", "pj", "pk", "pl", "placed",
"please", "plus", "pm", "pn", "po", "poorly", "possible", "possibly", "potentially",
"pp", "pq", "pr", "predominantly", "present", "presumably", "previously", "primarily",

"novel", "now", "nowhere", "nr", '"ns", '"nt", oa",

o

"probably", "promptly", "proud", "provides", "ps", "pt", 'pu", "put", "py", "q",
"qu", "que", "quickly", "quite", "qv", "r", "r2", "ra", "ran", "rather", "rc",
"rd", "re", "readily", "really", "reasonably", "recent", "recently", "ref",
"refs", "regarding", "regardless", "regards", "related", "relatively", "research",
"research—-articl", "respectively", "resulted", "resulting", "results", "rf",

"rh", "ri", "right", "rj", "rt*, "rm", "rn", "ro", "rq", "rr", "rs", "rt",

“ru", "run", "rv", "ry", "s", "s2", "sa", "said", "same", 'saw", "say",

"saying", "says", "sc", '"sd", 'se", "sec", "second", '"secondly", "section",

"see", 'seeing", 'seem", "seemed", "seeming", "seems", "seen", "self",

qj

12

9s '"selves", '"sensible", "sent", '"serious", "seriously", '"seven", "several",

99 '"sf", "shall", "shan", "shan't", '"she", "shed", "she'd", "she'll", "shes", '"she's",
100 "should", "shouldn", "shouldn't", "should've", '"show", "showed", "shown",

101 '"showns", '"shows", "si", '"side", '"significant", "significantly", "similar",

102 "similarly", '"since", "sincere", '"six", "sixty", "sj", "sl", "slightly",

103 ‘'sm", "sn", 'so", "some", "somebody", "somehow", "someone", 'somethan",

104 '"something", "sometime", "sometimes", 'somewhat", "somewhere", 'soon", "sorry",

105 '"sp", "specifically", "specified", 'specify", "specifying", 'sq", "sr",

106 'ss'", "st", "still", "stop", "strongly", "sub", "substantially",

107 "successfully", "such", "sufficiently", '"suggest", '"sup", "sure", "sy",

108 'system", "sz", "t", "t1", "t2", "t3", "take", "taken", "taking", "tb",

109 'tc", "td", "te", "tell", "ten", "tends", "tf", "th", "than", "thank",

110 '"thanks", "thanx", "that", "that'll", "thats", "that's", "that've", "the",

111 "their", "theirs", "them", "themselves", "then", '"thence", "there",

112 "thereafter", "thereby", "thered", '"therefore", "therein", '"there'll",

113 '"thereof", "therere", "theres", "there's", "thereto", "thereupon",

114 "there've", '"these", "they", "theyd", 'they'd", "they'll", "theyre",

115 '"they're", "they've", "thickv", "thin", "think", "third", "this", "thorough",

116 '"thoroughly", "those", "thou", "though", "thoughh", "thousand", "three",

117 "throug", "through", "throughout", "thru", "thus", "ti", "til", "tip",

s "tj", "t1v', "tm", "tn", "to", "together", '"too", "took", "top", "toward",

119 "towards", "tp", "tq", "tr", "tried", "tries", "truly", "try", "trying",

120 'ts", "t's", "tt", "tv", "twelve", "twenty", "twice", "two", "tx", "u",

121 '"u201d", '"ue", "ui", "uj", "uk", "um", "un", "under", "unfortunately",

122 "unless", "unlike", "unlikely", "until", "unto", " up", "upon",

123 '"ups", "ur", "us", "use", "used", "useful", "usefully", "usefulness",

124 '"uses", "using", "usually", "ut", "v", "
125 '"ve", "ve", "very", "via", "viz", '"vj", "vo", "vol", "vols", "volumtype",

uo

1 1
’

va", "value", "various", "vd",

126 '"'vq", vu", "w",
127 "Wasnlt”' ”Way"’ "We"' "Wed”' ”Weld", Ilwelcomell’ Ilwe'L'Lll’ "Welll",

vs", "vt", wa", "want", "wants", '"was'", "wasn", "wasnt",
128 "well-b", "went", "were", "we're", "weren", "werent", "weren't",
120 "we've", "what", "whatever", "what'll", "whats", "what's", "when",
130 '"whence", "whenever", "when's", "where", "whereafter", "whereas",
131 "whereby", "wherein", "wheres", '"where's", "whereupon", '"wherever",
132 "whether", "which", "while", "whim", "whither", "who", "whod", "whoever",
133 "whole", "who'll", "whom", "whomever", "whos", "who's", "whose", "why", "why's",
13« "wi", "widely", "will", "willing", "wish", "with", "within", "without", "wo",
135 "won'", "wonder", "wont", "won't", "words", "world", "would", "wouldn", "wouldnt",
136 "wouldn't", "www", "x", "x1", "x2", "x3", "xf", "xi", "xj", '"xk",
"xo", '"xs", "xt", "xv'", "xx", "y", "y2", "yes", "yet",
138 "yj", "yl', "you", "youd", "you'd", "you'll", "your", "youre",

137 llxlll’ "Xn",

139 "you're", "yours", "yourself", "yourselves", "you've", "yr", '"ys",

13

140 yt", "z", "zero", "zi", "zz", "COVID19", "Afghanistan'", "Albania",

141 "Algeria", "Andorra", "Angola"', "Antigua and Barbuda", "Argentina", "Armenia",

142 "Australia", "Austria", "Azerbaijan', "Bahamas", "Bahrain", "Bangladesh",

143 "Barbados", '"Belarus", "Belgium", 'Belize", "Benin", "Bhutan", "Bolivia",

144 "Bosnia and Herzegovina", "Botswana", "Brazil", "Brunei", "Bulgaria", "Burkina Faso",

145 "Burundi", "Cabo Verde'", "Cambodia", "Cameroon", "Canada", "Central African Republic",
<

146 "Chad", "Chile", "China", "Colombia", "Comoros", '"Congo (Congo-Brazzaville)",

147 "Costa Rica", "Croatia", "Cuba", "Cyprus", "Czech Republic (Czechia)",

148 '"Democratic Republic of the Congo", "Denmark", "Djibouti', "Dominica",

149 "Dominican Republic", "Ecuador", "Egypt", "El Salvador", "Equatorial Guinea",

150 "Eritrea", "Estonia", "Eswatini", "Ethiopia", "Fiji", "Finland",

151 "France", "Gabon", "Gambia", "Georgia", "Germany", "Ghana", "Greece",

152 "Grenada", "Guatemala", "Guinea", "Guinea-Bissau', "Guyana", "Haiti",

153 '"Honduras", '"Hungary", "Iceland", "India", "Indonesia", "Iran", "Iraq",

154 "Ireland", "Israel", "Italy", "Jamaica", "Japan", "Jordan", "Kazakhstan",

155 "Kenya", "Kiribati", "Kuwait", "Kyrgyzstan", "Laos", "Latvia",

156 ''Lebanon", '"Lesotho", "Liberia", '"Libya", "Liechtenstein", "Lithuania",

157 '"Luxembourg", "Madagascar", "Malawi", "Malaysia", "Maldives", "Mali",

158 "Malta", "Marshall Islands", "Mauritania", "Mauritius'", "Mexico", "Micronesia",

159 "Moldova", "Monaco", "Mongolia", "Montenegro", "Morocco", "Mozambique",

160 "Myanmar (formerly Burma)", "Namibia", "Nauru", "Nepal", "Netherlands",

161 "New Zealand", "Nicaragua", "Niger", "Nigeria", "North Korea",

162 "North Macedonia", "Norway", "Oman", '"Pakistan", "Palau", '"Palestine State",

163 '"Panama", '"Papua New Guinea", "Paraguay", "Peru", "Philippines", "Poland",

164 '"Portugal", "Qatar", "Romania", "Russia", "Rwanda", "Saint Kitts and Nevis",

165 ''Saint Lucia", "Saint Vincent and the Grenadines", '"Samoa", "San Marino",

166 ''Sao Tome and Principe", "Saudi Arabia", "Senegal", "Serbia", "Seychelles",

167 '"Sierra Leone", "Singapore", "Slovakia", "Slovenia", "Solomon Islands",

168 '"'Somalia", "South Africa", "South Korea", "South Sudan", "Spain",

169 "Sri Lanka", "Sudan", "Suriname", '"Sweden", "Switzerland", "Syria",

170 "Taiwan", "Tajikistan", "Tanzania", "Thailand", "Timor-Leste", "Togo",

171 "Tonga", "Trinidad and Tobago", "Tunisia", "Turkey", "Turkmenistan",

172 "Tuvalu", "Uganda", "Ukraine", "United Arab Emirates", "United Kingdom",

173 "United States of America", "Uruguay", "Uzbekistan", "Vanuatu",

174 "Vatican City (Holy See)", "Venezuela", "Vietnam",

175 "Yemen", "Zambia", "Zimbabwe"])

1 all_stopwords = ENGLISH_STOP_WORDS.union(custom_stopwords)
2 default_stopwords=set(STOPWORDS)

14

10

11

12

13

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

def

def

def

remove_stopwords_custom(text):
if isinstance(text,str):
return '
else:
return ' '.join([word for word in str(text).split() if word not in
< all_stopwords])

return text

remove_stopwords_default(text):
if isinstance(text,str):
return ' '.join([word for word in text.split() if word not in
< default_stopwords])
else: #make into string if not already
" '.join([word for word in str(text).split() if word not in
< default_stopwords])
return text

return

remove_clutter_custom(text): #dependent on stopword removal fx
text = text.apply(remove_stopwords_custom)

text = text.str.replace(r'#', '') #Remove instances of '#'
text = text.str.replace(r'@', '') #Remove instances of '@’
text = text.str.replace(r'-', '') #Remove instances of '-—
text = text.str.replace(r':', '') #Remove instances of ':'
text = text.str.replace(r';', '') #Remove instances of ';
text = text.str.replace(r'!', '') #Remove instances of '!'
text = text.str.replace(r'.', '') #Remove instances of '.'
text = text.str.replace(r'?', '') #Remove instances of '?'
text = text.str.replace(r',', '') #Remove instances of ','
text = text.str.replace(r'/', '') #Remove instances of '/'
text = text.str.replace(r' \ ', '') #Remove instances of '\'
text = text.str.replace(r's>', '') #Remove instances of
text = text.str.replace(r'<', '') #Remove instances of '<'
text = text.str.replace(r'~', '
text = text.str.replace(r'x', '') #Remove instances of 'x'

>

') #Remove instances of '*'

text = text.str.replace(r'_', '') #Remove instances of
text = text.str.replace(r' " ', '') #Remove instances of ' " '

text = text.str.replace(r'~"', '') #Remove instances of '~'

text = text.str.replace(r'["\x00-\x7F]+', '', regex=True) #rm emojis
text = text.str.replace(r'\s+', ' ').str.strip() #Further clean up
text = text.apply(remove_stopwords_custom)

return text

15

".join([word for word in text.split() if word not in all_stopwords])

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

def remove_clutter_default(text): #dependent on stopword removal fx
text = text.apply(remove_stopwords_default)
text = text.str.replace(r'#', '') #Remove instances of '#'
text = text.str.replace(r'@', '') #Remove instances of '@’
text = text.str.replace(r'-', '') #Remove instances of '-'
text = text.str.replace(r':', '') #Remove instances of ':'
text = text.str.replace(r';', '') #Remove instances of ';
text = text.str.replace(r'!', '') #Remove instances of '!'
text = text.str.replace(r'.', '') #Remove instances of
text = text.str.replace(r'?', '') #Remove instances of '?'
text = text.str.replace(r',', '') #Remove instances of ',
text = text.str.replace(r'/', '') #Remove instances of '/'
text = text.str.replace(r' \ ', '') #Remove instances of '\’
text = text.str.replace(r's', '') #Remove instances of '>'
text = text.str.replace(r'<', '') #Remove instances of
text = text.str.replace(r'~', '') #Remove instances of '*'
text = text.str.replace(r'x', '') #Remove instances of 'x'
text = text.str.replace(r'_', '') #Remove instances of
text = text.str.replace(r' ™ ', '') #Remove instances of ' " '
text = text.str.replace(r'~', '') #Remove instances of '~'
text = text.str.replace(r'[*\x00-\x7F]+', '', regex=True) #rm emojis
text = text.str.replace(r'\s+', ' ').str.strip() #Further clean up
text = text.apply(remove_stopwords_default)
return text

Applying the remove_ clutter_custom() function
train_data_english['tweet'] = remove_clutter_custom(train_data_english['tweet'])
validation_set = remove_clutter_custom(validation_set)

validation_set.to_csv(path + '/validation_set_cleaned_May1624', index=False,
< header=False)

Function for formatting text for fastText model. Adds ‘**label**’ to each line of text in text
containing column.

def add_label(row):
return f'__label__{row['label']} {row['tweet']}"

Adding labels to each row in training set, then sending the labeled data off to a separate csv.

16

1 train_data_english['labeled_text']l = train_data_english.apply(add_label, axis=1)

1 train_data_english['labeled_text'].to_csv('/Users/alexz/Programming/Python
< Projects/Sentiment Analysis of COVID-19 Misinformation with fastText/Sentiment-
< Analysis-of-COVID-19-Misinformation-with-fastText/train_data_labeled_Mayl1624',
< index=False, header=False)

3 labeled_text = ('/Users/alexz/Programming/Python Projects/Sentiment Analysis of
< COVID-19 Misinformation with fastText/Sentiment-Analysis—-of-COVID-19-
o Misinformation-with—fastText/train_data_labeled_May1624")

Model Training

1 # Train the fastText model

2 model = fasttext.train_supervised(input="'/Users/alexz/Programming/Python
o Projects/Sentiment Analysis of COVID-19 Misinformation with fastText/Sentiment-
< Analysis—-of-COVID-19-Misinformation-with-fastText/train_data_labeled_Mayl1624"',
o autotuneValidationFile=(path + '/validation_set_cleaned_May1624'),
< autotuneDuration=20, label= '__label__"')

Progress: 2.5% Trials: 3 Best score: nan ETA: 0h @ml9sProgress: 5.1% Trials: 3 Best score:
Training again with best arguments

Read @M words

Number of words: 11199

Number of labels: 2

Progress: 100.2% words/sec/thread: 235325 lr: -0.000161 avg.loss: 0.581356 ETA: 0h Om @sProgress: 100.0

Model Evaluation

1 train_data_english['tweet'].to_csv('/Users/alexz/Programming/Python
o Projects/Sentiment Analysis of COVID-19 Misinformation with fastText/Sentiment-
< Analysis—-of-COVID-19-Misinformation-with-fastText/tweet_contents.txt',
< 1index=False, header=False)

2 tweet_contents = ('/Users/alexz/Programming/Python Projects/Sentiment Analysis of
< COVID-19 Misinformation with fastText/Sentiment-Analysis—-of-COVID-19-
o Misinformation-with-fastText/tweet_contents.txt")

17

10

11

tweet_contents=pd.read_csv(tweet_contents, header=None)

For loops for the creation of predicted and actual label lists to be used in metrics assessment.

predicted_labels = []
for row in tweet_contents[0]:
prediction = model.predict(row)
label = prediction([0] [0]
label = label.replace('__label ', '")
predicted_labels.append(label)

actual_labels = []

for label in train_data_english['label']:
label = label.replace('__label ', ' ')
actual_labels.append(label)

Plotting a confusion matrix, and routing test /train labels into *sklearn* classification report.

conf_matrix = confusion_matrix(actual_labels, predicted_labels)
Create confusion matrix

plt.figure(figsize=(7,3))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues"')
plt.title('Confusion Matrix', fontsize=15, pad=1@0, loc='center')
plt.show()

print(classification_report(actual_labels, predicted_labels))

18

Confusion Matrix

800
600
- 400
- 200
precision recall fl-score support
fake 0.88 0.92 0.90 1020
real 0.92 0.89 0.90 1120
accuracy 0.90 2140
macro avg 0.90 0.90 0.90 2140
weighted avg 0.90 0.90 0.90 2140
Label Prediction Demonstration
1 def prediction_wizard(input_text=None):
2 if input_text is not None:
3 prediction = model.predict(input_text)
4 label = prediction[0] [0]
5 label = label.replace('__label "', '")
6 print(label)
7 else:
8 input_text = input('Enter the text you would like to predict: ')
9 prediction = model.predict(input_text)
10 label = prediction[0] [0]
11 label = label.replace('__label__', ''")
12 print(label)

19

1 #From random tweet on Twitter:
< https://twitter.com/PoisonDeathShot/status/1789495792039870702

2 prediction_wizard('2021 - Rosa Koire, Who Warned About the Global “Agenda 21” Back in
< 2012, Describes the Plan & Where We're Headed. It Should Scare the Shit Out of
< You. (RIP)")

fake

1 #From https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-
< considerations—-us.html

2 prediction_wizard('Healthcare providers who administer the Moderna COVID-19 Vaccine
o (2023-2024 Formula) to individuals ages 6 months through 11 years should ensure
< the correct volume of the vaccine (0.25 mL) is withdrawn from the vial and
< administered to the recipient. Discard vial and excess volume after extracting a
~ single dose.")

real

1 #Taken from https://www.cdc.gov/vaccines/covid-19/info-by-product/index.html
2 prediction_wizard('Janssen COVID-19 Vaccine is no longer available in the U.S. All

< remaining U.S. government stock of Janssen COVID-19 Vaccine expired May 7, 2023.
Dispose of any remaining Janssen COVID-19 Vaccine in accordance with local, state,

o
< and federal regulations.People ages 18 years and older who received 1 dose of

< Janssen COVID-19 Vaccine should be considered to have received a single-dose

< Janssen primary series.People ages 18 years and older who received 1 or 2 Janssen
< COVID-19 Vaccine dose are recommended to receive 1 bivalent mRNA dose (Moderna or
o Pfizer-BioNTech) at least 2 months after completion of the previous dose.')

real

1 #Taken from video summary: https://www.bitchute.com/video/SyfzZYzVU1U7s/ ; 'COVID
< VACCINES HAVE HIGHEST ‘KILL RATE’ IN MEDICAL HISTORY — MEDIA BLACKOUT'
2 prediction_wizard('Covid mRNA vaccines are now officially the deadliest drugs in the
< history of Western medicine, killing and injuring hundreds of millions of people
around the world as the fallout from the mass roll out continues to snowball. Big
Pharma and the global elite have blood on their hands and they are using mainstream
media to whitewash and cover up the greatest crime in history.World-renowned OBGYN
physician Dr. James Thorp has blown the whistle on the massive cover-up, warning
the public about the disturbing numbers that governments, Big Pharma and the
mainstream media are working overtime to keep hidden from the public.')

£ [A R

20

fake

21

	Introduction
	Abstract
	Data Collection and Summary
	Pre-Processing

	Model Training
	Hyperparameter Selection

	Evaluation
	Results
	Conclusion
	Discussion & Limitations
	Limitations of the Analysis:

	Future Direction
	Code Index
	Environment Setup

	Creating Custom Stopword List and Preprocessing Functions
	Model Training
	Model Evaluation
	Label Prediction Demonstration

